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AERODYNAMIC CHARACTERISTICS OF TWO 10-PERCENT-THICK

NASA SUPERCRITICAL AIRFOILS WITH DIFFERENT UPPER

.
SURFACE CURVATURE DISTRIBUTIONS

By Charles D. Harris

Langley Research Center

SUMMARY

An experimental investigation has been conducted to evaluate the chordwise extent

of the characteristic region of low curvature over the upper surface of the supercritical

airfoil. The results indicated that although extending this region of low curvature further

than on earlier supercritical airfoils provided a modest improvement in drag divergence

Mach number, it would have an adverse effect on drag at lower Mach numbers.

INTRODUCTION

An airfoil which operates efficiently in the mixed conditions of supercritical flow

has been developed by the National Aeronautics and Space Administration. (See refs. 1

to 7.) This distinctive airfoil shape, based on the concept of local supersonic flow with

isentropic recompression and referred to as the supercritical airfoil, is characterized

by a large leading-edge radius, a flattened upper surface, and a substantially cambered

trailing edge. The broad region of relatively low, nearly uniform, upper surface curva-

ture extends from slightly rearward of the leading edge to about the 70- or 75-percent

chord station. It was speculated that extending this region of low curvature nearer the

trailing edge than on previously reported (refs. 2 to 4) supercritical airfoils would per-

mit a more rearward location of the upper surface shock wave without rapid increases

in wave losses and associated separation; thus, the drag divergence Mach number at a

particular normal-force coefficient would be delayed or the drag break for a particular

Mach number would be delayed to a higher normal-force coefficient.

As part of the development program for the supercritical airfoil, wind-tunnel

measurements of the aerodynamic characteristics of two early supercritical airfoils with

different upper surface curvature distributions have been made in the Langley 8-foot

transonic pressure tunnel at Mach numbers from 0.60 to 0.81. The primary difference

between the two airfoils was the relative chordwise extent to which the low curvature
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or flattened region was maintained over the upper surface (both fore and aft of the

midchord).

The results of extending the region of low upper surface curvature on the super-

critical airfoil are presented herein as integrated section force and moment coefficients,

surface pressure distributions, and typical wake survey profiles.

SYMBOLS

Values are given in both SI and U.S. Customary Units.

calculations were made in U.S. Customary Units.

Cp pressure coefficient,
Pl - P_

qoo

Cp, sonic

cd

c d '

an]

c n

K

The measurements and

pressure coefficient corresponding to local Mach number of 1.0

chord of airfoil, 63.5 centimeters (25.0 in.)

section drag coefficient, Cd' -'6"

point drag coefficient (ref. 8)

section pitching-moment coefficient about the quarter-chord point,

1 u

section normal-force coefficient, _-'. Cp _Xc _ Cp -_

1 u

surface curvature, reciprocal of local radius of curvature

M Mach number

m

P

APt

surface slope, dy/dx

static pressure, newtons per meter 2 (pounds per foot 2)

total-pressure loss, newtons per meter 2 (pounds per foot 2)
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q dynamic pressure, newtonsper meter2 (poundsper foot2)

R Reynolds number basedonairfoil chord

X

Y

ordinate along airfoil reference line measured from airfoil leading edge,

centimeters (inches)

ordinate normal to airfoil reference line, centimeters (inches)

Z vertical distance in wake profile measured from bottom of rake,

centimeters (inches)

t_ angle of attack of airfoil reference line, degrees

Subscripts:

local point on airfoil

oO undisturbed stream

Abbreviations:

airfoil lower surface

u airfoil upper surface

APPARATUS AND TECHNIQUES

The apparatus and testing techniques used during this investigation were the same

as those described in references 1 to 5. These descriptions, where appropriate, are

repeated herein for completeness.

Model

Supercritical airfoil design philosophy.- In brief, the essence of the design philosophy

of the supercritical airfoil is that it be free from wave drag at supercritical design Mach

numbers. Although it is not the intent of this report to review the overall supercritical

airfoil design philosophy, restatement of some of the fundamental considerations involved



may prove helpful in understandingthe results presentedherein. References2 to 6 also
containbrief discussions of various aspectsof the supercritical airfoil concept.

At supercritical Mach numbers, a local region of supersonicflow extendsverti-
cally from the airfoil as indicated in figure l(a) by the pressure coefficients abovethe

Cp,sonic line andby the shadedareas of the flow field. On conventionalairfoils, this
pocketof supersonicflow is terminated by a more or less pronouncedshockwavewith
attendantwave losses. In addition, the positive pressure gradient through the shockwave
may, whensuperimposedon the subcritical pressure recovery, cause separation of the
boundarylayer with further increases in drag.

The forward upper surface of the airfoil maybe contouredso that the expansion
wavesfrom the leading edgeare reflected from the sonic line and, in turn, from the
upper surface as a series of Mach numberdecreasing, compressionwaves in the vicinity
of the shock. In figure l(b) this effect is illustrated schematically for a single expansion
wave originating near the leading edge. Isentropic recompression is thus encouragedand
an extensive chordwise region of generally constant supersonicflow is maintainedover
the upper surface at design conditionswith a weak shockwave near the three-quarter-
chord station. (Seefig. l(a).)

Wavelosses are approximately proportional to the local Machnumber entering the
shockandcanbe minimized by maintaining a region of low curvature and thereby reduc-
ing local velocities aheadof the shock. Extendingthis low curvature region too near the
trailing edge,however, forces a region of relatively high curvature in the vicinity of the
trailing edgewith increased trailing-edge slope. This high curvature wouldbe expected
to producea more adverse pressure gradient at the trailing edgewhere the boundary
layer is most sensitive andwould result in a greater tendencytoward trailing-edge sepa-
ration. The degreeand chordwise extent of low curvature therefore strongly influences
both the strength of the shockwave and onsetof trailing-edge separation, the two princi-
pal causesof drag divergence°

Another designconsideration is the shapingof the rear upper surface to producea
short region of near-sonic or slightly supersonic velocity immediately behind the shock
wave at designconditions. Sucha plateauhasbeenfoundto be desirable to permit the
flow to stabilize before going through its final recompression at the trailing edgeandalso
to prevent disturbancesfrom propagatingforward and strengtheningthe shockwave. At
intermediate off-design conditions (betweenthe onsetof supersonic flow and the design
point), the surface curvature required to producethe near-sonic plateaugeneratesa sec-
ond supersonic velocity peaknear the three-quarter-chord station. Extending the low-
curvature region rearward wouldbe expectedto reduce the magnitudeof this second
velocity peak.



The lower surface of the airfoil is generally shapedto prevent supercritical veloc-
ities on the lower surface which would lead to shock-waveformation andboundary-layer
separation andalso to provide a highly camberedtrailing edgeto compensatefor the
reduced lifting capacity of the relatively lightly camberedforward and middle regions
of the airfoil.

The original designof the supercritical airfoil (ref. 1) includeda slot near the trail-
ing edgeto permit high-energy lower surface flow to stabilize the boundarylayer on the
upper surface betweenthe shockwave and the subsonicpressure recovery. The slot
was later eliminated without degradationof performance potential.

Wind-tunnel models.- Two airfoil models (fig. 2), each having a maximum thickness-

chord ratio of approximately 0.10 and a thickness-chord ratio at the trailing edge of about

0.01, were used in this investigation. The airfoils in figure 2 have been assigned number

designations (8 and 9a) for identification purposes and are referred to by these designa-

tions hereafter. Coordinates of the two airfoils are presented as table I and other perti-

nent model geometry (surface slopes and upper surface curvature) are given in figures 3

and 4. The aerodynamic characteristics of airfoil 9a have been reported in reference 2

in relation to effects of trailing-edge geometry and both airfoils include the trailing-edge

cavity described in reference 2 and shown in figure 5(b). Extension of the region of low

upper surface curvature forward resulted in airfoil 8 having a larger leading-edge radius

to blend the circular leading edge into the upper surface profile and avoid discontinuities

in surface slopes. There were minor differences in the lower surfaces of the two airfoils

but their effects on the aerodynamic characteristics were considered to be secondary and

overshadowed by the differences in the upper surface.

The models, mounted in an inverted position, spanned the width of the tunnel with a

span-chord ratio of 3.4. Angle of attack was changed manually by rotating the model about

pivots in the tunnel side walls. A photograph of one of the models and the profile drag

rake mounted in the tunnel is shown as figure 5 and sketches of one of the airfoils and the

profile drag rake are presented in figure 6.

Wind Tunnel

The investigation was conducted in the Langley 8-foot transonic pressure tunnel

(ref. 9). This tunnel is a continous-flow variable-pressure wind tunnel with controls that

permit the independent variation of Mach number, stagnation pressure and temperature,

and dewpoint. It has a 2.16-meter-square (85.2-inch-square) test section with filleted

corners so that the total cross-sectional area is equivalent to a 2.44-meter-diameter

(8-foot-diameter) circle. The upper and lower test section walls are axially slotted to
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permit testing through the transonic speed range. The total slot width at the position of

the model averaged about 5 percent of the width of the upper and lower walls.

The solid side walls and slotted upper and lower walls make this tunnel well suited

to the investigation of two-dimensional models since the side walls act as end plates

and the slots permit development of the flow field in the vertical direction.

Boundary- Layer Transition

Based on the technique discussed in reference 10, boundary-layer transition was

fixed along the 28-percent chord line on the upper and lower surfaces in an attempt to

simulate full-scale Reynolds numbers by providing the same relative trailing-edge

boundary-layer displacement thickness at model scale as would exist at full-scale flight

conditions. The simulation technique, which requires that laminar flow be maintained

ahead of the transition trip, is limited on the upper surface to those test conditions in

which shock waves or other steep adverse pressure gradients occur behind the point of

fixed transition so that the flow is not tripped prematurely. Full-scale simulation on the

lower surface would be valid through the Mach number range of the investigation since

laminar flow can be maintained ahead of the trip for all test conditions. The transition

trips consisted of 0.25-cm-wide (0.10-in.) bands of number 90 carborundum grains.

Measurements

Surface pressure measurements.- Normal forces and pitching moments acting on

the airfoils were determined from surface static-pressure measurements. The surface

pressure measurements were obtained from chordwise rows of orifices located approxi-

mately 0.32c from the tunnel center line. Orifices were concentrated near the leading

and trailing edges of the airfoils to define the severe pressure gradients in these regions.

In addition, a rearward-facing orifice was included in the cavity at the trailing edge

(identified at an upper surface x/c location of 1.00). The transducers used in the dif-

ferential pressure scanning valves to measure the static pressure at the airfoil surface

had a range of +68.9 kN/m 2 (10 lb/in2).

Wake measurements.- Drag forces acting on the airfoils, as measured by the momen-

tum deficiency within the wake, were derived from vertical variations of the total and static

pressures measured across the wake with the profile drag rake shown in figure 6(b). The

rake was positioned in the vertical-center-line plane of the tunnel, approximately 1 chord

length rearward of the trailing edge of the airfoil. The total-pressure tubes were flattened

horizontally and closely spaced vertically (0.36 percent of the airfoil chord) in the region

of the wake associated with skin-friction boundary-layer losses. Outside this region, the

tube vertical spacing progressively widened until in the region above the wing where only

6 _ CT::C:-- _ j,



shock losses were anticipated, the total-pressure tubes were spaced about 7.2 percent of

the chord apart. Static-pressure tubes were distributed as shown in figure 6(b). The

rake was attached to the conventional center-line sting mount of the tunnel which permitted

it to be moved vertically to center the close concentration of tubes in the boundary-layer

wake.

Total and static pressures across the wake were also measured with the use of

differential-pressure scanning valves. The transducer in the valve connected to total-

pressure tubes intended to measure boundary-layer losses had a range of +17.2 kN/m 2

(2.5 lb/in2); and the transducer in the valve for measuring shock losses and static pres-

sure had a range of +6.9 kN/m 2 (1 lb/in2).

Reduction of Data and Corrections

Calculation of c n and Cm.- Section normal-force and pitching-moment coefficients

were obtained by numerical integration (based on the trapezoidal method) of the local

surface-pressure coefficient measured at each orifice multiplied by an appropriate weight-

ing factor (incremental area).

Calculation of ccl.- To obtain section drag coefficients from the total and static pres-

sures behind the model, point drag coefficients for each of the total-pressure measurements

were computed by using the procedure of reference 8. These point drag values were then

summed by numerical integration across the wake, based on the trapezoidal method.

Corrections for wind-tunnel-wall effects.- The most significant effect of wall inter-

ference on the data was a lift-induced angle-of-attack shift which must be subtracted from

the measured geometric angle of attack. According to theory (ref. 11), the mean value of

this angle-of-attack correction at the midchord, in degrees, is estimated to be approxi-

mately three times the section normal-force coefficient. However, based on experience

in other two-dimensional tests in the Langley 8-foot transonic pressure tunnel, such a

correction is believed to be unrealistically large. Because of this uncertainty, the uncor-

rected geometric angles of attack are used herein.

The theory of reference 11 also indicates that tunnel blockage effects would be small;

consequently, no corrections have been applied to the data for blockage effects.

TEST CONDITIONS

Tests were conducted at Mach numbers from 0.60 to 0.81 for a stagnation pressure

of 0.1013 MN/m 2 (1 atm) with resultant wind-tunnel Reynolds numbers based on the air-

foil chord as shown in figure 7. The stagnation temperature of the tunnel air was auto-

matically controlled at approximately 322 K (120 ° F) and the air was dried until the dew-

point in the test section was reduced sufficiently to avoid condensation effects.



PRESENTATIONOF RESULTS

Sectionforce andmomentcoefficients of airfoils 9a and8 are presentedover an
extensiveangle-of-attack range in figures 8 and9, respectively. In several instances,
drag dataare not presentedfor the higher anglesof attack becausemomentumlosses
in the wake exceededthe measuring capability of the profile drag rake. Comparison of
the aerodynamic characteristics of the two airfoils over an abbreviatedangle-of-attack
range near the designnormal-force coefficient of 0.7 is presented in figure 10. The
drag rise characteristics of the two airfoils at the designnormal-force coefficient of 0.7
are summarized in figure 11. Chordwisepressure profiles of the two airfoils are com-
pared in figure 12andtypical wakeprofiles are comparedin figure 13. The profiles pre-
sentedin figure 13are representative of the momentumlosses in thewake as indicated
by stagnation-pressure deficits across thewake. The middle part of theseprofiles
reflects viscous and separation losses in the boundarylayer, whereas the "wings" of the
profiles reflect direct losses in stagnationpressure across the shockwaves.

DISCUSSION

As notedin the model section, dissimilarities betweenthe lower surfaces of the two
airfoils investigated (figs. 2 and3) were consideredto haveonly secondaryimport andto
be overshadowedby the differences in the upper surfaces. The effects of these lower sur-
face dissimilarities on the aerodynamiccharacteristics will not be considered except to
note that the small variations in the pressure distributions over the lower surface (fig. 12)
appear to be consistent with the geometric dissimilarities.

It was believed that maintaining the region of low curvature over a greater chord-
wise extent of the upper surface thanon earlier supercritical airfoils would result in a
higher drag divergenceMach number andreducethe magnitudeof the intermediate off-
designsecondvelocity pea_k.Figures 11and 12do indeedindicate a modest improvement
in drag divergence Machnumber anda reduction in the magnitudeof the secondvelocity
peakfor airfoil 8. Also apparent in the pressure profiles of figure 12are the larger
andmore rearwardly located leading-edgesuction peaksfor airfoil 8 which are associ-
atedwith the larger leading-edgeradius.

The small difference in drag divergence Machnumbersbetweenthe two airfoils may
be related to the difference in the pressure profiles in figure 12and, in turn, to the differ-
encesin curvatures (fig. 4). Figure 12(t) illustrates howthe extendedlow curvature distri-
bution of airfoil 8 allowed the upper surface shockwave to moveto a more rearward loca-
tion before rapid increases in shock losses andassociatedboundary-layer separation
becameapparent. Althoughthe shocklocation of the two airfoils are approximately the



same in this figure, the more rapidly increasing curvature of airfoil 9a betweenapproxi-
mately the 60- and80-percent chord station allowed theflow to expandto higher induced
velocities entering the shockwave that resulted in a stronger shockand incipient trailing-
edgeseparation with higher drag than airfoil 8.

These relatively small improvementswere achieved,however, at the expenseof
substantially higher drag levels of airfoil 8 at lower Mach numbers. (Seefig. 11.) Com-
parisons of the surface-pressure distributions in figure 12and the stagnation-pressure
deficits across the wake (fig. 13(a))indicate the higher drag level for airfoil 8 at M = 0.60

may be attributed to the steeper adverse pressure gradient of the trailing edge (with

greater attendant boundary-layer losses) since there are no perceptible shock losses at

these conditions. As Mach number is increased beyond 0.60 to 0.70, airfoil 8 exhibits a

more rapid increase in drag than airfoil 9a (fig. 11) because of the higher leading-edge

suction peaks and stronger shock waves near the leading edge (fig. 12). Figure 13(b)

suggests, however, that the more rapid drag buildup was not due to losses through the

shock wave itself but was due to the influence of the shock wave on boundary-layer

development.

It would appear from the results of this investigation, therefore, that although simply

extending the region of low curvature over very much more of the upper surface than on

earlier supercritical airfoils provided a modest improvement in drag divergence Mach

number, it would have an unacceptably adverse effect on drag at lower Mach numbers.

CONCLUDING REMARKS

An investigation has been conducted in the Langley 8-foot transonic pressure tunnel

to evaluate the chordwise extent of the characteristic region of low curvature over the

upper surface of the supercritical airfoil. Maintaining the region of low curvature over

a greater chordwise extent than on earlier supercritical airfoils resulted in a modest

improvement in drag divergence Mach number and significantly reduced second velocity

peaks. These improvements were accompanied, however, by substantial drag penalties

due to increased boundary-layer losses at lower Mach numbers. The data indicate, there-

fore, that extending the region of low curvature very much farther than on earlier super-

critical airfoils would have an adverse effect on the aerodynamic characteristics of the

supercritical airfoil.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., November 26, 1973.
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TABLE I•- EXPERIMENTAL SECTION COORDINATES

0

•0075

•0125

.0250

.0375

.050

.075

• 100

.125

•150

.175

.200

.250

.300

.350

.400

.450

.500

.550

.575

.600

.625

.650

.675

.700

.725

.750

.775

.800

.825

.850

.875

.900

.925

.950

.975

.990

1.000

Airfoil 9a

0

.0160

•0196

.0250

.0286

.0314

.0358

.0389

.0415

.0433

.0448

.0461

.0479

.0491

.0498

.0500

.0499

.0494

.0485

.0480

.0474

.0465

°0456

.0445

.0433

.0419

.0401

.0382

.0359

.0332

.0300

.0264

.0220

.0167

.0103

.0035

-.0016

0

-.0165

-.0201

-.0259

-.0299

-.0329

-.0374

-.0407

-.0432

-.0451

-.0465

-.0476

-.0491

-.0498

-.0500

-.0494

-.0485

-.0468

-.0440

-.0420

-.0393

-.0357

-.0310

-.0250

-.0200

-.0152

-.0109

-.0072

-.0041

-.0014

+.0005

+.0016

+.0016

+.0004

-.0026

-.0073

-.0120

-.0157

Leading-edge
radius, 0.0212c

(Y/C)u (Y/C) 1

Airfoil 8

0 0

.0184 -.0164

.0221 -.0205

.0275 -.0265

.0310 -.0303

.0337 -.0333

.0374 -.0378

.0402 -.0412

.0423 -°0435

.0442 -.0452

.0456 -.0465

.0469 -.0475

.0488 -.0489

.0499 -.0499

.0504 -.0503

.0505 -.0500

.0503 -.0491

.0497 -.0476

.0485 -.0449

.0479 -.0430

.0472 -.0403

.0461 -.0365

.0451 -.0321

.0439 -.0267

.0427 -.0213

.0413 -.0160

.0398 -.0112

.0380 -.0071

.0359 -.0036

.0335 -.0005

.0309 +.0018

.0278 +.0032

.0242 +.0036

.0196 +.0027

.0140 -.0001

.0056 -.0048

...... .0094

...... .0136

Leading-edge
radius, 0.0228c

Nm
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Figure 13.- Representative wake profiles.
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